Contamination of Food by Nitrosamines and the Associated Public Health Risks

Arun HS Kumar

Stemcology, School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.

The presence of N-Nitrosamines (N-NAs) in food poses a serious risk to public health, according to a recent scientific opinion by the European Food Safety Authority (EFSA). They are formed in food through the reaction of nitrosating agents with amino-based substances under certain conditions. The EFSA assessment revealed that the Margin of Exposure (MOE) for the 10 carcinogenic N-NAs (NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP, and NPYR) in food was highly likely to be less than 10,000 for all age groups, indicating a significant health concern. However, the assessment was limited by uncertainties due to censored data and lack of information on some food categories. This highlights the need for continued monitoring of N-NAs in food and the implementation of mitigation measures to protect public health.

The CONTAM Panel of the European Commission has conducted a scientific evaluation of the human health risks associated with the presence of N-NAs in food. N-NAs are formed in food through the reaction of nitrosating agents with amino-based substances. These compounds have been detected in various food products such as cured meats, processed fish, beverages, cheese, soy sauce, oils, processed vegetables, and human milk. Heat treatment during food processing can also increase the levels of N-NAs, particularly in meat and fish products. The CONTAM Panel has identified and characterized the hazards of 32 N-NAs, but the risk assessment was focused on 10 carcinogenic N-NAs found in food. These compounds have been shown to be absorbed and distributed in the bodies of experimental animals, primarily to the liver but also to lungs, kidneys, and brain. N-NAs are also known to cross the placenta, and fetal exposure to these compounds has been reported. The distribution of N-NAs within the body and the extent of accumulation in different organs may vary depending on the specific compound, the route of exposure, and individual factors such as age, sex, and metabolic capacity.

Most N-NAs undergo metabolism by specific enzymes (Figure 2), which can lead to the formation of DNA adducts that may initiate carcinogenesis. The liver plays a significant role in metabolizing N-NAs, but extrahepatic distribution can also occur, especially when co-exposure to other substances (such as ethanol and nicotine) that affect these enzymes involved in metabolism of N-NAs. Hence alcohol consumption and smoking can significantly enhance the toxicity of N-NAs.

The fate of N-NAs in humans is not well understood, although measurable levels of these compounds have been found in blood, gastric juice, urine, and milk. The origin of these N-NAs is unclear, and it is not known whether they are formed endogenously or come from food, prescription drugs and/or water sources. Limited studies involving human volunteers consuming meals with known N-NAs content have shown that only trace amounts of the ingested dose were recovered in biological fluids, except when ethanol was co-administered. Ethanol may decrease the hepatic clearance of certain N-NAs, similar to what has been observed in rodents. The metabolism and activation of N-NAs in humans vary from those in rodents, and different tissues in the human body, such as the gastrointestinal and respiratory tracts, have been shown to contribute to the bioactivation of N-NAs. Studies have also demonstrated the genotoxic properties of N-NAs, particularly the acyclic volatile N-NAs (NDMA, NMEA, NDEA, and NDPA). These compounds can induce gene mutations in both bacteria (influencing the microbiome) and mammalian cells, leading to DNA adduct formation and potentially disrupting the gut-brain and gut-cardiac physiology. The cyclic volatile N-NAs (NMOR, NPIP, and NPYR) have also been shown to be mutagenic, while the genotoxicity of other N-NAs is less well-studied. The genotoxic mechanisms of N-NAs are the underlying mode of action for their carcinogenic activity in animals, but other potential mechanism such as through influence on microbiome cannot be excluded. N-NAs are reported to induce tumour formation in various organs such as the liver, pharynx, oesophagus, stomach, respiratory tract, and lung in different mammalian species. Epidemiological studies examining the association between dietary intake of N-NAs and cancer have limitations due to factors like selection bias, information bias, and confounding influencers. Also estimating N-NAs intake from food frequency questionnaires, as reported in several studies, can lead to misclassification of exposure. Additionally, these studies cannot establish tumour target sites and reference points for N-NAs due to limitations in study design and the presence...
Effect Callithrix jacchus. EFSA Reports, 2023, 21, e07884.


REFERENCES
Lipid metabolism disorders

N-nitrosamines in Qingdao dried aquatic products and dietary risk

Kumar: Nitrosamines in Food

1. Lipid metabolism disorders

2. N-nitrosamines in Qingdao dried aquatic products and dietary risk

3. 25. Kumar: Nitrosamines in Food

4. 24. Kumar: Nitrosamines in Food

5. 23. Kumar: Nitrosamines in Food

6. 22. Kumar: Nitrosamines in Food

7. 21. Kumar: Nitrosamines in Food

8. 20. Kumar: Nitrosamines in Food

9. 19. Kumar: Nitrosamines in Food

10. 18. Kumar: Nitrosamines in Food

11. 17. Kumar: Nitrosamines in Food

12. 16. Kumar: Nitrosamines in Food

13. 15. Kumar: Nitrosamines in Food


15. 13. Kumar: Nitrosamines in Food

16. 12. Kumar: Nitrosamines in Food

17. 11. Kumar: Nitrosamines in Food

18. 10. Kumar: Nitrosamines in Food

19. 9. Kumar: Nitrosamines in Food

20. 8. Kumar: Nitrosamines in Food

21. 7. Kumar: Nitrosamines in Food

22. 6. Kumar: Nitrosamines in Food

23. 5. Kumar: Nitrosamines in Food

24. 4. Kumar: Nitrosamines in Food

25. 3. Kumar: Nitrosamines in Food

26. 2. Kumar: Nitrosamines in Food

27. 1. Kumar: Nitrosamines in Food

Correspondence:

Dr. Arun HS Kumar, DVM, PhD.

Room 216, School of Veterinary Medicine,
University College Dublin, Belfield,
Dublin-04, Ireland.

Email: arun.kumar@ucd.ie

Received: 01-05-2023;

Revised: 06-05-2023;

Accepted: 07-02-2023.