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ABSTRACT
The human gut microbiome, once considered a passive collection of commensal organisms, is 
now recognized as a dynamic biochemical factory. Among its many functions, one of the most 
remarkable is its capacity to synthesize complex bioactive compounds, including metabolites 
with pharmacological activity. This article reviews recent discoveries highlighting the drug-like 
molecules produced by gut microbes, explores the implications for drug discovery and 
personalized medicine, and proposes a framework for leveraging microbial biosynthesis as a 
novel therapeutic frontier.
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INTRODUCTION

The human gut is home to trillions of microbes that collectively 
form a dynamic and highly specialized metabolic ecosystem. 
Long considered passive passengers within the body, these 
microbes are now understood to be active biochemical agents, 
producing, transforming, and regulating compounds with 
profound pharmacological effects on host physiology.1-4 In 
recent years, one of the most exciting revelations in microbiome 
science has been the recognition that gut bacteria act as “hidden 
chemists,” synthesizing drug-like molecules that impact human 
health and disease. Their metabolic outputs, including bioactive 
lipids, peptides, and hormone analogues, have the potential not 
only to influence existing therapeutic pathways but also to define 
entirely new ones including disease modifying capabilities.2,5-11 
A particularly promising frontier in this field involves 
microbiota-derived Bile Acids (BAs). Traditionally viewed as 
host-synthesized agents critical for fat digestion, BAs are now 
appreciated as complex signalling molecules that participate 
in immune regulation, metabolic control, and even tumour 
dynamics (Figure 1). A recent integrative study combining bile 
acid metabolomics, microbial genetics, and bioinformatics has 
revealed that the biosynthetic capabilities of gut microbes in 
this domain are far more extensive than previously thought.12 
By functionally profiling over 200 putative microbial genes 
involved in BA metabolism, researchers identified 56 previously 

uncharacterized bile acids, many of which are detectable in 
both humans and other mammals. Most strikingly, a subset 
of these newly identified bile acids was observed to be potent 
antagonists of the human Androgen Receptor (hAR), a nuclear 
receptor that regulates gene expression related to development, 
metabolism, and cancer progression. These microbial BAs were 
shown to suppress AR-mediated transcriptional activity and 
inhibit androgen-driven gene expression in human cells.12 In 
a compelling proof-of-concept experiment, one of these BAs 
was demonstrated to suppress tumour growth and enhance 
the efficacy of anti-programmed death-1 immunotherapy in 
an AR-dependent manner, providing evidence of a previously 
unrecognized gut microbiome–cancer axis. This discovery not 
only expands the catalogue of microbiota-derived molecules with 
drug-like activity but also establishes a causal and mechanistic 
link between microbial metabolism and host endocrine signalling.

Beyond bile acids, the gut microbiome is known to produce a 
range of bioactive compounds including indoles, short-chain 
fatty acids, and small-molecule peptides that modulate the 
immune system and affect neurological and metabolic processes 
(Figure 1). What distinguishes microbial biosynthesis in the 
gut from classical pharmaceutical chemistry is its adaptability 
and personalization. The metabolic profiles of individual 
microbiomes vary with diet, genetics, and environment, resulting 
in a personalized pharmacological fingerprint that could explain 
differential drug responses among patients.2,13,14 Understanding 
and harnessing this microbial biosynthetic potential presents 
a new paradigm for drug discovery.15,16 Instead of synthesizing 
drugs from scratch through traditional chemical methods, a 
paradigm shift is emerging in the field of drug discovery, one 
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that centres on mining microbial metabolites, particularly those 
produced by the human gut microbiome.17,18 This innovative 
approach leverages the natural biosynthetic capacity of microbes, 
enabling researchers to identify novel bioactive compounds 
with therapeutic potential. The gut microbiome functions as 
a vast chemical factory, continuously generating a wide array 
of small molecules, peptides, and secondary metabolites that 
interact with host cells, signalling pathways, and receptors.2,19-21 
By studying the biosynthetic gene clusters encoded in microbial 
genomes, researchers can uncover new classes of compounds 
that were previously overlooked using classical pharmaceutical 
pipelines.22,23 This microbial-based approach offers several 
advantages that could significantly improve the current 
therapeutic development process. First, it introduces a new level of 
efficiency and sustainability. Traditional drug development often 
involves labour-intensive screening of large compound libraries 
or complex multi-step synthesis of novel molecules. In contrast, 
microbial biosynthesis enables the natural production of complex 
molecules in a cost-effective and scalable manner, reducing time 
and resource investment. Moreover, advances in synthetic biology 
allow researchers to engineer gut microbes to enhance the yield, 
specificity, and therapeutic action of these compounds in vivo.24 
This opens the door for “living therapeutics,” where engineered 
microbial strains are administered to continuously produce 
therapeutic molecules within the human body, thus eliminating 
the need for repeated dosing and improving patient compliance. 
Second, this strategy supports a more personalized approach 
to medicine. Because the composition of each individual's gut 
microbiome is shaped by their genetics, diet, environment, and 
lifestyle, and hence the metabolites produced can vary from 
person to person.25-28 This unique metabolic fingerprint may help 
explain why individuals respond differently to the same drug. 
By incorporating microbiome profiling into drug development 
and treatment planning, researchers can predict and account 
for variations in drug metabolism, efficacy, and toxicity, thereby 
improving safety and therapeutic outcomes. This can be 
particularly useful for managing chronic diseases such as diabetes, 
cancer, or neurodegenerative disorders, where conventional 
therapies often suffer from variable responses and significant 
side effects. Additionally, mining microbial metabolites for drug 
discovery expands the chemical diversity of drug candidates. 
Microbes produce compounds with structures and mechanisms 
of action that are distinct from those typically synthesized in 
pharmaceutical labs. This diversity can help overcome limitations 
in targeting “undruggable” proteins or pathways that resist 
conventional small molecule approaches. Some microbial 
metabolites also function as agonists or antagonists of human 
receptors, mimicking natural ligands with high specificity and 
low toxicity.29-34 Integrating microbial metabolite mining into the 
drug development process provides a powerful complement to 
existing pharmaceutical strategies. It enhances drug discovery 
efficiency, supports personalized treatment, broadens the chemical 

landscape of therapeutic candidates, and enables the development 
of microbiome-based therapies that work synergistically with the 
human host. This represents a transformative shift in therapeutics 
development, moving from synthetic, one-size-fits-all drugs to 
tailored microbiome-informed therapeutics that leverage nature’s 
own medicinal chemists.

Emerging evidence underscores the profound influence of 
gut microbiota-derived metabolites on host physiology, with 
significant implications for disease development, progression, 
and therapeutic intervention. Microbial metabolites such as 
Trimethylamine N-Oxide (TMAO), Phenylacetylglutamine 
(PAGln), Indoxyl Sulfate (IS), Trimethyllysine (TML), Deoxycholic 
Acid (DCA), and Trimethylamine (TMA) have been strongly 
associated with increased risk of Major Adverse Cardiovascular 
Events (MACEs), stroke, Parkinson’s disease, and Type 2 Diabetes 
Mellitus (T2DM).15,35,36 Notably, TMAO not only promotes 
cardiovascular dysfunction but also exacerbates neurological 
disorders like Parkinson’s and stroke through pro-inflammatory 
and metabolic dysregulation.37-41 PAGln, by interacting with 
adrenergic receptors, promotes platelet thrombosis,42,43 while 
IS and TML contribute to endothelial dysfunction.8,44 In 
metabolic disease, tryptamine and phenethylamine-producing 
gut microbes drive insulin resistance,45,46 with molecular 
mechanisms pointing to altered hepatic and systemic signalling. 
Moreover, metabolites such as 3-dehydrocarnitine, leucine, and 
epiandrosterone sulfate have emerged as potential biomarkers 
in obstructive sleep apnea,47,48 and indole derivatives (IPA, IAA, 
and ILA) activate protective pathways (GPR30/AMPK/SIRT1), 
alleviating neurodegeneration associated with aging.49,50 In 
acute and chronic inflammatory diseases, compounds such as 
Nicotinamide Mononucleotide (NMN) and glutamine reduce 
organ injury (e.g., in liver ischemia/reperfusion or pancreatitis) 
via SIRT3-PRDX5 and macrophage metabolic reprogramming, 
respectively.51,52 Other anti-inflammatory microbial metabolites, 
such as 12-ketolithocholic acid, inhibit IL-17A to suppress 
ulcerative colitis exacerbation,53-55 while urolithins derived from 
ellagitannins exhibit potent anti-inflammatory and anticancer 
activity, especially when paired with standard therapies like 
5-fluorouracil.56-58

Furthermore, gut microbiota influences a variety of immune, 
metabolic, and oncological pathways via the production of 
Short-Chain Fatty Acids (SCFAs) like butyrate, acetate, and 
propionate. These SCFAs regulate mucosal immunity by 
promoting IL-22 production, enhancing CD4+ T cells and innate 
Lymphoid Cells (ILCs) function, and maintaining intestinal 
homeostasis.59-61 Butyrate activates the macrophage/WNT/
ERK signalling axis to support gut barrier repair62 and regulates 
gluconeogenesis in pregnancy via cAMP-PKA-GCN5 pathway.63 
Intriguingly, SCFAs can both support health by enhancing 
cardiac adaptation to pressure overload64 and preventing 
precocious puberty65 and facilitate disease progression, such 
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as by promoting prostate cancer growth through Insulin like 
Growth Factor-1 (IGF-1) signalling.66 Such counterintuitive 
and context-dependent effects may explain the contrasting 
pharmacological profiles observed among different SCFAs. 
These complex interactions underscore the need for network 
pharmacology approaches,67-69 which can model the multifaceted 
molecular targets and signalling pathways influenced by SCFAs 
across tissues, thereby enabling a systems-level understanding 
of their beneficial versus pathological roles. Indole metabolites 
interact with the aryl hydrocarbon receptor (AhR) to reinforce 
mucosal immunity and phagocytic activity, even protecting 
against radiation toxicity and septic injury.70,71 Metabolites such as 
inositol-1,4,5-trisphosphate (InsP3) promote epithelial repair,72 
and D-serine confers protection against acute kidney injury.73 
In the context of microbial signalling, autoinducer-2 (AI-2) 
modulates lung inflammation,20 while bioactive peptides influence 
human immunity, even in Inflammatory Bowel Disease (IBD).74 
These findings not only highlight the gut microbiota as a master 
regulator of immune and metabolic health but also establish a 
foundation for targeted microbiota-based interventions such as 
dietary modulation, microbial metabolite supplementation, and 
microbiome engineering as promising strategies for combating 
a wide range of diseases, including neurodegeneration, 
cardiovascular disease, inflammatory disorders, infections, and 
cancer.

While many microbial metabolites offer therapeutic potential, it 
is important to acknowledge that not all of them are beneficial. 
Several gut microbiota-derived compounds have been implicated 
in the development and progression of pathological conditions. 
For instance, TMA, produced from dietary choline and carnitine 
by gut microbes, is converted in the liver to TMAO, a metabolite 
strongly associated with cardiovascular diseases, including 
atherosclerosis and stroke.75-77 Similarly, metabolites such as 
IS and p-cresyl sulfate have been linked to chronic kidney 
disease and systemic inflammation.15,76,78,79 Certain microbial 
metabolites, like 4-EPS, have even been shown to influence brain 
function and behaviour in animal models, suggesting a role in 
neurodevelopmental disorders.10 These findings underscore the 
dual nature of the gut microbiome’s metabolic output, while some 
metabolites support host health, others contribute to disease. This 
opens a promising avenue for therapeutic intervention focused 
on reshaping the microbiota composition to favour beneficial 
metabolic profiles. Strategies such as precision probiotics, 
prebiotic supplementation, dietary modulation, or even 
microbiome transplantation can be employed to suppress the 
production of harmful metabolites and promote the synthesis of 
protective ones. By improving the quality of the gut microbiome, 
we can potentially prevent or mitigate the impact of harmful 
microbial metabolism, making microbiota-targeted therapy a 
vital component of personalized and preventive medicine.

Gut microbiota-derived metabolites activate a broad spectrum 
of host receptors, eliciting diverse pharmacological effects 
across physiological systems. SCFAs such as acetate, propionate, 
and butyrate primarily signal through G-Protein-Coupled 
Receptors (GPCRs) like GPR41, GPR43, and GPR109A,11,80,81 
where they regulate immune responses, energy homeostasis, and 
epithelial integrity. Tryptophan-derived metabolites, including 
Indole-3-Acetic Acid (IAA), Indole-3-Propionic Acid (IPA), 
and Indole-3-Aldehyde (IAld) engage the AhR,82,83 influencing 
mucosal immunity, inflammatory tone, and neuroprotection. 
Microbial-modified bile acids activate nuclear receptors such as 
Farnesoid X Receptor (FXR)84 and Pregnane X Receptor (PXR),85,86 
governing bile acid metabolism, xenobiotic detoxification, and 
innate immunity. Meanwhile, phenolic metabolites like p-cresol 
and PAGln interact with adrenergic receptors,43,87 heightening 
platelet reactivity and cardiovascular risk. Neuroactive metabolites 
such as Gamma-Aminobutyric Acid (GABA) produced by specific 
microbes affect GABAergic signalling,88,89 potentially influencing 
behaviour, anxiety, and gut motility. Other microbial products, 
including butyrate, function as Histone Deacetylase (HDAC) 
inhibitors,90,91 thereby modulating host gene expression and 
epigenetic landscapes. However, not all receptor-mediated effects 
are beneficial, some contribute to disease pathology. For example, 
TMAO, a metabolite that indirectly signals through vascular 
and inflammatory pathways, is associated with heightened 
cardiovascular risk.36,38,92 Similarly, excessive activation of certain 
receptors by microbial toxins can lead to chronic inflammation 
or metabolic imbalance. These challenges highlight the need 
for targeted strategies to shift the microbial metabolite profile 
toward health-promoting compounds. One solution involves 
the use of next-generation probiotics and engineered bacterial 
strains designed to produce specific beneficial metabolites while 
suppressing harmful ones. Dietary modulation through prebiotic 
fibers, polyphenols, and low-choline diets can also alter microbial 
composition and function to favour desirable receptor-ligand 
interactions. Additionally, precision interventions such as 
microbial gene editing or selective small-molecule inhibitors 
may allow us to modulate receptor signalling pathways directly. 
By understanding the receptor-specific actions of gut-derived 
metabolites, we can develop novel therapies that either amplify 
protective signals or block deleterious ones, transforming the 
gut microbiome from a passive player into a programmable 
pharmacological platform.

Nonetheless, major challenges remain. The complexity of 
microbial ecosystems and their dependence on host and 
environmental context complicates the functional mapping 
of microbial metabolites. Many biosynthetic pathways remain 
cryptic, and a substantial fraction of gut microbes are not 
readily culturable using standard techniques. Tools such as 
gnotobiotic animal models, organoid systems, high-resolution 
metabolomics, and machine learning-driven genome mining 
are becoming indispensable in overcoming these hurdles. If 



BEMS Reports, Vol 11, Issue 2, Jul-Dec, 202524

Kumar.: Microbial Medicinal Chemists

microbes can manufacture compounds that modulate nuclear 
receptors like hAR, could they also be coaxed to generate 
analogues of known drugs or entirely new therapeutic classes? 
With advances in synthetic biology, microbiome editing, and 
precision metabolomics, we may soon be designing microbial 
consortia not just for gut health, but as live, programmable drug 
factories, producing anti-inflammatories, anticancer agents, 
neuromodulators, and more. Genetically modified microbes 
are rapidly transforming the landscape of chemical synthesis 
by serving as programmable platforms to produce complex, 
high-value compounds. Through advances in synthetic biology and 
metabolic engineering, scientists can rewire microbial genomes 
to enhance or introduce new biosynthetic pathways, enabling the 
precise production of pharmaceuticals. For example, engineered 
strains of Escherichia coli and Saccharomyces cerevisiae 
have been developed to produce artemisinin (an antimalarial 
drug),93 opioids,94 and even chemotherapy agents like Taxol 
precursors.95,96 In the context of the gut microbiome, researchers 
are now exploring how genetically modified commensal bacteria 
can be tailored to synthesize therapeutic molecules directly in 
the human body, offering targeted treatment for diseases such as 
metabolic disorders, cancer, and inflammatory bowel disease.97,98 
These engineered microbes not only offer sustainable and 
scalable alternatives to traditional chemical synthesis but also 
open new avenues for in situ drug delivery, microbiome-based 
therapeutics, and precision medicine. This vision demands a shift 

in how we approach drug discovery. Rather than synthesizing 
every compound in vitro, perhaps the future lies in mining and 
directing the metabolic genius of our microbial partners. The gut 
microbiome may yet prove to be the most versatile chemist we’ve 
ever known. In short, your next medicine may already be living 
inside you.

CONCLUSION

In conclusion, the gut microbiota functions as a powerful, 
underexplored source of natural product biosynthesis. Microbes 
are not merely metabolically bio-transforming drugs, they are 
also actively synthesizing bioactive chemicals that influence 
host physiology. Microbes independently produce a vast array 
of bioactive metabolites from dietary components, host-derived 
substrates, and their own metabolic processes. These include 
SCFAs, indole derivatives, secondary bile acids, neurotransmitters 
(e.g., GABA, serotonin precursors), phenolic compounds, 
polyamines, and peptides like microcins and lantibiotics. Many 
of these metabolites interact directly with host receptors (e.g., 
GPCRs, nuclear receptors, AhR), modulate immune and nervous 
system activity, influence metabolism, and even impact epigenetic 
regulation via HDAC inhibition. The microbial biosynthesis of 
such compounds is increasingly viewed as a form of in vivo drug 
production, with applications in designing living therapeutics, 
engineered microbes that synthesize specific beneficial molecules 

Figure 1: Systematic effects of gut microbiota derived metabolites. The figure shows a few examples of gut microbiota derived 
metabolites and the diversified effects (beneficial and pathological) on systemic physiology. RiPPs: Ribosomally synthesized 

and post-translationally modified peptides.
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within the host. This opens a powerful new frontier in drug 
discovery, rather than creating new drugs from scratch, scientists 
can mine the microbial genome for biosynthetic gene clusters and 
harness the microbiota’s natural metabolic machinery to produce 
novel therapeutics. As our ability to decode and manipulate these 
microbial pathways improves, we are entering an era where future 
therapeutics may originate not in a laboratory beaker, but from 
the living chemistry lab within our own bodies.
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